Nonconvex vector optimization of set-valued mappings
نویسندگان
چکیده
منابع مشابه
Optimality Conditions for Vector Optimization with Set-Valued Maps
In this paper, we establish a Farkas-Minkowski type alternative theorem under the supposition of nearly semiconvexlike set-valued maps. Based on the alternative theorem and some other lemmas, we present necessary optimality conditions and sufficient optimality conditions for set-valued vector optimization problems with extended inequality constraints in a sense of weak E-minimizers.
متن کاملLower semicontinuity for parametric set-valued vector equilibrium-like problems
A concept of weak $f$-property for a set-valued mapping is introduced, and then under some suitable assumptions, which do not involve any information about the solution set, the lower semicontinuity of the solution mapping to the parametric set-valued vector equilibrium-like problems are derived by using a density result and scalarization method, where the constraint set $K$...
متن کاملLower Semicontinuous Regularization for Vector-Valued Mappings
The concept of the lower limit for vector-valued mappings is the main focus of this work. We first introduce a new definition of adequate lower and upper level sets for vector-valued mappings and establish some of their topological and geometrical properties. Characterization of semicontinuity for vector-valued mappings is thereafter presented. Then, we define the concept of vector lower limit,...
متن کاملWeighted Variational Inequalities with Set-valued Mappings
Because of their applications in economics, game theory, mathematical physics, operations research and other areas, many classes of vector variational inequalities were intensively studied. For existence of solutions, resolution methods or equivalence with equilibrium and optimization problems see, for example, [11], [14], [15], [19], [17] and the references therein. For the study of variationa...
متن کاملA Sard Theorem for Set-Valued Mappings∗†
If F is a set-valued mapping from IRn into IRm with closed graph, then y ∈ IRm is a critical value of F if for some x with y ∈ F (x), F is not metrically regular at (x, y). We prove that the set of critical values of a set-valued mapping whose graph is a definable (tame) set in an o-minimal structure containing additions and multiplications is a set of dimension not greater than m − 1 (resp. a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2003
ISSN: 0022-247X
DOI: 10.1016/s0022-247x(02)00410-9